25. The Synthesis of Natural Acetylenic Compounds from *Eutypa lata* (Pers: F.) Tul.

by Eric Defranq¹), Thierry Zesiger²), and Raffaele Tabacchi*

Institut de Chimie de l'Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel

(23.X.92)

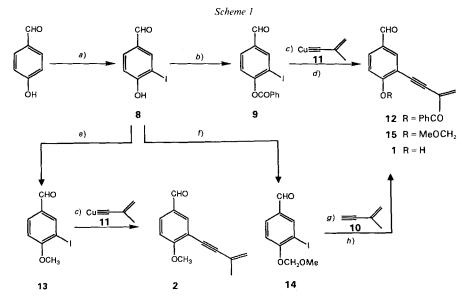
The synthesis of a series of novel acetylenic compounds 1–7, isolated recently from the fungus *Eutypa lata*, is described. The crucial step is the coupling reaction between a protected aryl halogenide and the acetylenic chain as a cuprous acetylide (*Scheme 1*). A more efficient method using bis(triphenylphosphine)palladium dichloride ([Pd(PPh₁)₂Cl₂]) as catalyst was also carried out with success.

Introduction. – The fungus Eutypa lata also named Eutypa armeniacae is responsible for the dieback of vineyards (eutypiosis) observed during the last years in Switzerland, France, and many other countries [1]. In the course of our search for secondary metabolites with a phytotoxic activity in the culture medium of Eutypa lata, a series of new acetylenic compounds 1–7 were isolated [2] [3]. Compound 1 (= 4-hydroxy-3-(3-methylbut-3-en-1-ynyl)benzaldehyde), named eutypine, was found to be the most phytotoxic compound isolated [2] [3].

CH2OH

1
$$R^1 = CHO, R^2 = OH$$

2
$$R^1 = CHO, R^2 = MeO$$


6
$$R^1 = CH_2OH, R^2 = MeO$$

To study the role played by eutypine 1 and the related compounds 2-7 in the pathogenesis of eutypiosis, more specific tests (by protoplast bioassay) are necessary. Thus, to acquire bigger quantities of material for the bioassay, compounds 1-7 were synthesized from the commercially available 4-hydroxybenzaldehyde.

¹⁾ Present address: LEDSS, University J. Fourier, F-38041 Grenoble.

Present address: Sarasin AG, CH-4010 Basel.

Results and Discussion. – The series of new acetylenic compounds is structurally similar to the previously reported frustulosin [4] and contains the same acetylenic chain, except for 7. Retrosynthetic analysis suggested that 1 could be prepared by coupling the alkyne chain (as a cuprous acetylide) with an aryl halogenide [5]. Thus the iodo compound 8, which was more reactive than the bromo or the chloro analogue, was prepared by iodination of 4-hydroxybenzaldehyde [6] (Scheme 1). However, direct coupling of 8 prior to protection of the phenol function produced cyclisation of the ortho-hydroxyacetylide leading to a benzofuran derivative³). Since eutypine (1) was relatively stable under basic conditions, we decided to protect the phenol as an ester (benzoate 9) which was stable under the coupling conditions. Other protecting groups such as MeOCH₂, tetrahydro-2H-pyran-2-yl, Me₃Si, or (t-Bu)Me₂Si were unsuitable and led to the benzofuran derivative. The acetylenic chain 2-methylbut-1-en-3-yne (10) was prepared by

a) I₂, KI, Me₂NH. b) PhCOCl, Et₃N, Et₂O. c) DMF, 120°. d) EtOH, 3% aq. NaOH soln. e) Me₂SO₄, K₂CO₃, acetone. f) CH₂(OMe)₂, P₂O₅, CH₂Cl₂. g) Et₂NH, [Pd(PPh₃)₂Cl₂], CuI. h) AcOH/HCl.

dehydration of the commercially available 2-methylbut-3-yn-2-ol in Ac₂O/concentrated H₂SO₄ solution [7] and transformed to the cuprous acetylide 11 by using CuI in NH₄OH following Atkinson's method [8]. Coupling of 9 and 11 was then accomplished in DMF for 3 h, affording compound 12. The coupling temperature was crucial, the phenol protection (benzoate) being cleaved above 120° to give as the major product again the benzofuran derivative. Intermediate 12 was directly saponified without further purification to afford 1. The overall yield was 20%, and large-scale synthesis was possible. Compound 2 was prepared in the same manner by coupling the iodo compound 13 with the cuprous acetylide 11. The MeO group present in 2 could not serve as protecting group

³⁾ This type of benzofuran derivatives was also found in the culture media of Eutypa lata.

of the phenolic function in the synthesis of 1, since 1 was unstable under the deprotection conditions. Compound 2 was also prepared from 1 by direct methylation with MeI.

A more efficient method of synthesizing 1 consisted in coupling the acetylenic chain 10 with an aryl halogenide in the presence of a catalyst, bis(triphenylphosphine)-palladium dichloride ([Pd(PPh₃)₂Cl₂]), in basic media [9]. In this case, the PhCO protecting group could not be used; it was replaced by the MeOCH₂ group which was easily introduced using dimethoxymethane in acidic media ($8 \rightarrow 14$; Scheme 1). Subsequent coupling with 10 in the presence of [Pd(PPh₃)₂Cl₂] in Et₂NH afforded, in good yield, 15 as a precursor of 1. In acidic media, 15 was relatively unstable. Thus, hydrolysis of the MeOCH₂ group had to be performed under particularly mild conditions, i.e. in AcOH/concentrated HCl solution, leading to 1 in 55% overall yield.

Carboxylic acid 3 was obtained in good yield as white needles by oxidation of 1 using NaClO₂ in H₂O/dioxane solution [11] (*Scheme 2*). Under these conditions, Cl₂ was liberated. Thus, sulfamic acid was added to avoid chlorination of the product. However, some chlorohydrine derivative produced by chlorination of the double bond was also

a) NH₂SO₃H, NaClO₂, dioxane/H₂O. b) H₂O₂, aq. KOH soln. c) NaBH₄, 1 % aq. NaOH soln.

formed in low yield (<5%). For the synthesis of hydroxyquinone 4, 1 was treated with 3-chloroperbenzoic acid (Baeyer-Villiger reaction [12]) which resulted to the total degradation of 1. However, using H_2O_2 in basic medium (Dakin's reaction [13]), we obtained 4 in good yield. Compound 4 was identical to siccayne (described by Pinault et al. [14]) by spectroscopic means (NMR, MS). Diol 5 was obtained in quantitative yield by reduction of 1 using NaBH₄. The same procedure was applied to the reduction of 2 to afford 6.

Triol 7 could not be prepared by coupling iodo compound 9 with the corresponding acetylenic chain (but-3-yn-2-ol), because the cuprous acetylide was unstable. By protecting the alcohol group of but-3-yn-2-ol with a tetrahydro-2*H*-pyran-2-yl group, the cuprous acetylide became more stable, but it was not reactive enough for coupling. Because of the high coupling temperature required, we only observed cyclisation to a benzofuran derivative (see above). However, the reversed reaction (opening of the benzo-

Scheme 3

furan ring) was possible [15] and studied in our laboratory [16]. Thus, alkylation of benzofuran 16⁴) by acetaldehyde followed by ring-opening in the presence of the strong base BuLi yielded 53% of 7 (*Scheme 3*).

NMR and GC/MS comparison of the synthetic compounds 1–7 with the corresponding natural products confirmed their established structures. These compounds could be synthesized in large scale and are presently being tested for their phytotoxicity.

We would like to thank Dr. S. Claude for his assistance in NMR spectroscopy and Dr. M. Dai for the preparation of this manuscript. Financial support from the Swiss National Science Foundation (grant no 20-28922-90) is gratefully acknowledged.

Experimental Part

General. All commercially available chemical reagents were used without further purification. All reactions were followed by TLC: aluminium sheets silica gel $60\ F_{254}$ (Merck). Prep. column chromatography (CC): silica gel (Merck 60, 0.063–0.200 mm). M.p.: Gallenkamp MFB-595-010M. FT-IR [cm⁻¹]: Perkin-Elmer 1720X; KBr disks, unless otherwise indicated. ¹H-NMR: Bruker AMX 400; δ in ppm using TMS as internal standard, J in Hz. EI-MS: positive mode; Nermag-R-3010 spectrometer. The microanalyses were done at the Laboratory for Organic Chemistry of ETH, Zurich.

4-Hydroxy-3-iodobenzaldehyde (8). To a soln. of commercial 4-hydroxybenzaldehyde (24.4 g, 0.2 mol) in 30% aq. Me₂NH, an aq. soln. of I₂ (40.6 g, 0.16 mol) and K1 (50 g, 0.3 mol) was added dropwise at r.t. The mixture was stirred for 3 h, then cooled to 0°, acidified with 10% aq. HCl soln., and extracted with Et₂O. The org. layer was washed with 1% aq. NaHSO₃ soln., then with 5% aq. NaHCO₃ soln., dried (MgSO₄), and evaporated, and the residue purified by CC (CH₂Cl₂): 8 (28.8 g, 58%). M.p. 116-117°. FT-IR: 3300-3100 (OH), 1667, 1593, 1567, 1506, 1494, 1408, 1294, 1217, 1190, 1152, 1138, 890, 825. 1 H-NMR (400 MHz, CDCl₃): 9.80 (s, CHO); 8.23 (d, J = 1.9, H-C(2)); 7.79 (dd, J = H-C(6)); 7.11 (d, J = 8.3, H-C(5)); 6.50 (br. s, OH). EI-MS: 248 (100, M^+), 247 (95, $[M - H]^+$), 219 (18), 92 (32), 63 (30).

4-(Benzoyloxy)-3-iodobenzaldehyde (9). To a soln. of 8 (6 g, 24 mmol) and Et₃N (3.7 g, 37 mmol) in dry Et₂O, an Et₂O soln. of benzoyl chloride (3.7 g, 26.5 mmol) was added dropwise at r.t. After 30 min, the soln. was filtered, washed with 0.5% aq. HCl soln., twice with 2% aq. NaHCO₃ soln., dried (MgSO₄), and evaporated, and the residue recrystallised in CH₂Cl₂/ligroine: 9 (7.3 g, 83%). M.p. 96°. FT-IR: 3060, 2855, 1745, 1700, 1590, 1565, 1475, 1450, 1375, 1270, 1245, 1215, 1185, 1170, 1060, 1020, 890, 815. 1 H-NMR (400 MHz, CDCl₃): 9.97 (s, CHO); 8.41 (d, J=1, H-C(2)); 8.28 (m, H-C(2'), H-C(6')); 7.95 (dd, H-C(6)); 7.60-7.80 (m, H-C(3'), H-C(4'), H-C(5')); 7.50 (d, J=8, H-C(5)). EI-MS: 352 (1, M^+), 105 (100, C₆H₅CO⁺), 77 (40, C₆H₅⁺).

3-Iodo-4-methoxybenzaldehyde (13). To a soln. of 8 (5 g, 20 mmol) in dry acetone (100 cm³) was added anh. K_2CO_3 (10 g, 72 mmol) and Me_2SO_4 (1.9 g, 15 mmol). The mixture was stirred for 3 h at r.t., then diluted with H_2O , and concentrated under vacuum. The aq. layer was extracted with Et_2O , the org. layer washed successively with 1% aq. NaOH soln. and sat. aq. NaCl soln., dried (MgSO₄), and evaporated, and the residue purified by CC (CH₂Cl₂): 13 (4.2 g, 80%). M.p. 103°. FT-IR: 3010, 2970, 2935, 2830, 1675, 1650, 1590, 1565, 1490, 1440, 1310, 1275, 1255, 1180, 1155, 1045, 1015, 885, 825. ¹H-NMR (400 MHz, CDCl₃): 9.82 (s, CHO); 8.30 (d, d = 2, H-C(2)); 7.85 (dd, H-C(6)); 6.92 (d, d = 9, H-C(5)); 3.97 (s, MeO). EI-MS: 262 (100, d⁺), 261 (74, [d - H]⁺), 119, 77.

⁴⁾ Compound 16 was prepared in our laboratory in five steps from salicylaldehyde in 12% overall yield [16].

3-Iodo-4-(methoxymethoxy) benzaldehyde (14). To a soln. of 8 (10 g, 0.04 mol) and $CH_2(OMe)_2$ (20 equiv., 72 ml) in dry CH_2Cl_2 (100 ml) was added P_2O_5 (35 g) portionwise. After 2 h, more P_2O_5 (20 g) was added. The mixture was stirred for 5 h (complete disappearance of 8). The mixture was then diluted with CH_2Cl_2 , washed with IN aq. NaOH and sat. aq. NaCl soln., dried (MgSO₄), and evaporated. The yellow residue was used in the next step without purification. CC (CH_2Cl_2) yielded pure 14 (9.3 g, 80%). M.p. 66–67°. FT-IR: 3050, 2960, 2900, 2840, 1682, 1589, 1489, 1455, 1440, 1417, 1371, 1310, 1249, 1199, 1161, 1140, 1082, 1038, 1013, 973, 925. 1 H-NMR (400 MHz, $CDCl_3$): 9.84 (s, CHO); 8.31 (d, J=1.8, H-C(2)); 7.82 (dd, H-C(6)); 7.17 (d, J=8.3, H-C(5)); 5.34 (s, CH_2); 3.52 (s, Me). EI-MS: 292 (10, M^+), 231 (5), 219 (5), 45 (100).

2-Methylbut-1-en-3-yne (10). A soln. of Ac₂O (50 g, 0.49 mol) and conc. H₂SO₄ (2 g) was added dropwise to 2-methylbut-3-yn-2-ol at 50°. Compound 10 was purified by distillation (11.4 g, 72%). B.p. 32–33°. $n_D^{20} = 1.411$ ([7]: 1.4099). ¹H-NMR (400 MHz, CDCl₃): 5.39–5.29 (2t, C=CH₂); 2.87 (s, CH \equiv C); 1.90 (t, Me). EI-MS: (100, M^+), 65 (50, [$M - H^+$]), 63, 51, 50, 40, 39.

Copper(I) 3-Methylbut-3-en-1-yn-1-ide (11). To a soln. of CuI (8 g, 42 mmol) in 25% aq. NH₄OH soln. (100 ml), NH₂OH · HCl (200 mg) was added until the soln. was light blue. Then 10 (2.3 g, 34 mmol) in EtOH (10 ml) was added and the mixture stirred vigorously for 15 min and poured into H₂O (600 ml; \rightarrow yellow precipitate). After 10–15 min, the mixture was filtered and the precipitate washed with H₂O and then EtOH and dried: 11 (2.2 g, 50%).

4-(Benzoyloxy)-3-(3-methylbut-3-en-I-ynyl)benzaldehyde (12). Under N_2 , 9 (2.0 g, 5.7 mmol) and 11 (1.45 g, 11.4 mmol) in dry DMF (50 ml) were heated at 110–120° for 3 h. The soln. was then concentrated by distillation under vacuum and AcOEt added. The insoluble Cu^1 -salt was filtered off and the org. layer washed twice with sat. aq. NaCl soln., dried (MgSO₄), and evaporated to give a brown oil which was used without further purification for the next reaction. CC (CH₂Cl₂/hexane) gave pure 12 (0.64 g, 39%). EI-MS: 290 (5, M^+), 105 (100, $C_6H_3CO^+$), 77 (40, $C_6H_3^+$).

4-Hydroxy-3-(3-methylbut-3-en-1-ynyl) benzaldehyde (= Eutypine; 1). a) To an EtOH soln. (40 ml) of 12 (0.6 g) was added 3% aq. NaOH soln. (20 ml). After stirring for 2 h, the soln. was diluted with H_2O , concentrated under vacuum, and washed with Et_2O . The aq. layer was then acidified with 5% aq. HCl soln. and extracted with AcOEt. The org. layer was washed with 2% aq. NaHCO₃ soln., dried (MgSO₄), and evaporated. The residual oil was purified by CC (CH₂Cl₂) to give 1 (120 mg, 62%). White needles. M.p. 76–77°. FT-IR: 3500–3100 (OH), 2959, 2922, 2852, 1670, 1600, 1567, 1496, 1435, 1375, 1321, 1295, 1265, 1251, 1143, 920, 831. 1 H-NMR (400 MHz, CDCl₃): 9.85 (s, CHO); 7.89 (d, J = 1.8, H-C(2)); 7.79 (dd, H-C(6)); 7.08 (d, J = 8.5, H-C(5)); 6.39 (br. s, OH); 5.49–5.42 (2s, C=CH₂); 2.03 (s, Me). EI-MS: 186 (100, M^+), 185 (80, $[M - H]^+$), 157 (50, $[M - CHO]^+$), 128, 77. Anal. calc. for $C_{12}H_{10}O_2$ (186.21): C 77.40, H 5.41; found: C 77.10, H 5.26.

b) To a soln. of 15 (see below; 2.4 g, 0.01 mol) in AcOH (60 ml) were added five drops of 12n HCl. The soln. was stirred at r.t. under N_2 for 8 h and then poured slowly to sat. aq. NaHCO₃ soln. and extracted with Et₂O. The org. layer was washed several times with sat. aq. NaHCO₃ soln. and extracted again with 1n aq. NaOH soln. The aq. layer which contained 1 was then acidified with 5% aq. HCl soln. and extracted with Et₂O. The org. layer was washed with sat. aq. NaCl soln., dried (MgSO₄), and evaporated. The residual oil was purified by CC (CH₂Cl₂): 1 (1.52 g, 78%). White needles.

4-(Methoxymethoxy)-3-(3-methylbut-3-en-1-ynyl)benzaldehyde (15). A mixture of 14 (1.6 g, 0.006 mol), 2-methylbut-1-en-3-yne (10; 3 equiv., 1.1 g), [Pd(PPh₃)₂Cl₂] (0.01 equiv., 40 mg), and CuI (0.01 equiv., 11 mg) in Et₂NH (40 ml) was stirred overnight under N₂ at r.t. The mixture was then diluted with Et₂O, washed twice with 5% aq. HCl, twice with sat. aq. NaCl, dried (MgSO₄), and evaporated. The residual yellow oil was submitted to CC (silica gel): 15 (1.07 g, 85%). Pale-yellow oil. FT-IR (NaCl, film): 2958, 2922, 2829, 1697, 1595, 1573, 1496, 1444, 1430, 1371, 1311, 1246, 1154, 1124, 1114, 1083, 977, 818. 1 H-NMR (400 MHz, CDCl₃): 9.87 (s, CHO); 7.94 (d, J = 2.1, H-C(2)); 7.78 (dd, H-C(6)); 7.23 (d, J = 8.6, H-C(5)); 5.45-5.35 (2s, C=CH₂); 5.33 (s, CH₂O); 3.53 (s, MeO); 2.01 (s, Me). EI-MS: 230 (20, M^+), 215 (15, $[M - Me]^+$), 199 (20), 128 (40), 45 (100).

4-Methoxy-3-(3-methylbut-3-en-1-ynyl) benzaldehyde (2) was prepared by the same route as 1 by coupling 13 with 11. Yield 50%. M.p. 49-50°. FT-IR: 3095, 2950, 2840, 1695, 1595, 1575, 1500, 1460, 1440, 1300, 1260, 1130, 1120, 1020, 905, 815. 1 H-NMR (400 MHz, CDCl₃): 9.86 (s, CHO); 7.94 (d, J = 1.8, H-C(2)); 7.82 (dd, H-C(6)); 6.99 (d, J = 8.5, H-C(5)); 5.45-5.35 (2m, C=CH₂); 3.97 (s, MeO); 2.02 (s, Me). EI-MS: 200 (100, M^{+}), 159 (40, $[M - C_3H_3]^{+}$), 128 (50, $[M - C_3H_4O_2]^{+}$), 43 (45, $C_3H_7^{+}$).

4-Hydroxy-3-(3-methylbut-3-en-1-ynyl) benzoic Acid (3). To 1 (0.2 g, 1.07 mmol) in dioxane/ H_2O 3:2 (50 ml) was added sulfamic acid (0.6 g, 6.2 mmol) and NaClO₂ (0.96 g, 0.85 mmol). After 1 h stirring at r.t., NaHCO₃ (2 g) was added and the soln. concentrated and washed with AcOEt, acidified with 5% aq. HCl soln., and extracted with AcOEt. The org. layer was dried (MgSO₄) and evaporated. CC (CH₂Cl₂/AcOEt/AcOH 7:3:1): 3 (170 mg, 79%). White needles. M.p. 112°. FT-IR: 3470, 3410, 2925, 2855, 1685, 1610, 1580, 1495, 1420, 1320, 1280, 1220, 1170,

1120, 1100, 910, 840. 1 H-NMR (400 MHz, CDCl₃): 10.90 (br. s, COOH); 8.15 (d, J = 0.9, H-C(2)); 8.01 (dd, H-C(6)); 7.02 (d, J = 8.5, H-C(5)); 5.49-5.41 (2m, C=CH₂); 2.03 (s, Me). EI-MS: (100, M^{+}), 185 (30, $[M - \text{OH}]^{+}$), 157 (20, $[M - \text{COOH}]^{+}$), 128 (10), 51 (10).

2-(3-Methylbut-3-en-1-ynyl)benzene-1,4-diol (= Siccayne; 4). To a soln. of 1 (0.28 g, 5 mmol) in aq. KOH soln. (20 ml), 3% aq. H_2O_2 soln. (5 ml) was added at r.t. under vigorous stirring. After 18 h, the aq. soln. was washed with Et_2O , acidified with 5% aq. HCl soln., and extracted with AcOEt. The org. layer was washed with 0.2% aq. NaHCO₃ soln., dried (MgSO₄), and evaporated. CC (CH₂Cl₂) gave pure 4 (150 mg, 86%). M.p. 115° ([14]: 114–116°). FT-IR: 3500–3100 (OH), 2920, 1615, 1450, 1375, 1235, 1210, 1190, 1160, 1110, 990, 925, 890. 1 H-NMR (400 MHz, CDCl₃): 6.79 (m, H-C(3), H-C(5), H-C(6)); 5.45–5.35 (2m, J = 0.5, C=CH₂); 4.91 (br. s, OH); 2.00 (m, J = 0.5, Me). EI-MS: 174 (100, M⁺), 173 (30, [M - H]⁺), 159 (30, [M - Me]⁺), 147 (20), 131 (20), 115 (15), 103 (10), 91, 77.

4-Hydroxy-3-(3-methylbut-3-en-1-ynyl) benzyl Alcohol (5). To 1 (0.186 g, 1 mmol) in 1% aq. NaOH soln. (25 ml) was added dropwise a 10% aq. NaOH soln. (2 ml) of NaBH₄ (50 mg, 1.3 mmol). After 2 h, the mixture was diluted with AcOEt and acidified with 5% aq. HCl soln. The org. layer was then washed with aq. NaHCO₃ soln., dried (MgSO₄), and evaporated, and the residue purified by CC (CH₂Cl₂/AcOEt 9:1): 5 (179 mg, 95%). White needles. M.p. 63–65°. FT-IR: 3600–3100 (OH), 2955, 2890, 2200, 1715, 1610, 1510, 1430, 1375, 1320, 1290, 1240, 1180, 1120, 1010, 985, 815. 1 H-NMR (400 MHz, CDCl₃): 7.34 (*d*, J = 1, H-C(2)); 7.23 (*dd*, H-C(6)); 6.92 (*d*, J = 8, H-C(5)); 5.43–5.35 (2*m*, J = 0.5, C=CH₂); 4.58 (*s*, CH₂OH); 2.01 (*m*, J = 0.5, Me). EI-MS: 188 (100, M^+), 171 (60, [M - OH]⁺), 131, 91, 77.

4-Methoxy-3-(3-methylbut-3-en-1-ynyl) benzyl Alcohol (6). As described for 5, 6 was prepared by reduction of 2. Yield 90%. FT-IR: 3500-3200 (OH), 2930, 2840, 2190, 1670, 1605, 1500, 1460, 1420, 1385, 1280, 1255, 1180, 1160, 1130, 1030, 895, 815. 1 H-NMR (400 MHz, CDCl₃): 7.46 (d, J = 1, H-C(2)); 7.28 (dd, H-C(6)); 6.89 (d, J = 9, H-C(5)); 5.45-5.33 (2m, J = 0.5, C=CH₂); 4.62 (s, CH₂OH); 3.91 (s, MeO); 2.02 (dd, J = 0.5, Me); 1.70 (br. s, OH). EI-MS: 202 (100, M^+), 201 (20, $[M - H]^+$), 185 (10), 161(10), 91, 77.

4-Hydroxy-3-(3-hydroxybut-1-ynyl) benzyl Alcohol (7). To 5-(hydroxymethyl)benzofuran (16; 0.9 g, 6 mmol) in dry THF (30 ml) was added 1.6M BuLi/hexane (8 ml, 12 mmol) at 0°. After 1 h, acetaldehyde (0.27 g, 6 mmol) was added and the mixture stirred for 1 h. Again, 1.6M BuLi/hexane (4 ml, 6 mmol) was added and stirred at r.t. for 3 h. The soln. was then quenched with aq. NH₄Cl soln. and concentrated under vacuum. The aq. layer was extracted with Et₂O and the org. layer extracted with 2% aq. NaOH soln. The aq. layer was then acidified with 5% aq. HCl soln. and extracted with AcOEt, the org. phase dried and evaporated, and the residue purified by CC (CH₂Cl₂): 7 (0.61 g, 53%). ¹H-NMR (400 MHz, CD₃OD): 7.27 (d, J = 2, H-C(2)); 7.15 (dd, H-C(6)); 6.80 (d, J = 8, H-C(5)); 4.70 (q, J = 7, CH(OH)Me); 4.46 (s, CH₂OH); 1.49 (d, J = 7, Me). EI-MS: 192 (30, M^+), 177 (100, $[M - Me]^+$), 91 (70), 84 (40).

REFERENCES

- A. Bolay, W. J. Moller, Rev. Swiss Vitic. Arboric. Horticol. 1977, 9, 241; M. V. Carter, A. Bolay, Phytopath. Z.
 1972, 75, 187; M. C. Mauro, V. Valiant, P. Tey-Rulh, Y. Mathieu, J. Fallot, Am. J. Enol. Vitic. 1988, 39, 200.
- [2] J. M. Renaud, G. Tsoupras, R. Tabacchi, Helv. Chim. Acta 1989, 72, 929.
- [3] P. De Angelis, Thesis, University of Neuchâtel, 1990.
- [4] M. S. R. Nair, M. Anchel, Phytochmistry 1977, 16, 390.
- [5] C. E. Castro, R. D. Stephens, J. Org. Chem 1963, 2163; G. Posner, in 'Organic Reactions', J. Wiley & Sons, New York, 1972, Vol. 19, pp. 253–361.
- [6] J.H. Barnes, E.T. Borrows, J. Elks, B. Hems, A.G. Long, J. Chem. Soc. 1950, 2824.
- [7] A. A. Petrov, K. V. Mingelava, B. S. Kupin, Dokl. Akad. Nauk SSSR 1958, 123, 258.
- [8] R. E. Atkinson, R. F. Curtis, J. A. Taylor, J. Chem. Soc. (C) 1967, 578.
- [9] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 4467.
- [10] K. Fuji, S. Nakano, E. Fujita, Synthsis 1975, 276.
- [11] B.O. Lindgreen, T. Nilson, Acta Chem. Scand. 1973, 27, 888.
- [12] I.M. Godfrey, M.V. Sargent, J.A. Elix, J. Chem. Soc., Perkin Trans. 1 1974, 1353.
- [13] L. Syper, Synthesis 1989, 167.
- [14] M. Pinault, Y. Frangin, J.-P. Genet, H. Zamarlik, Synthesis 1990, 935.
- V. Prey, H. Pieh, Monatsh. Chem. 1949, 80, 790; H. Emmert, Ber. Dtsch. Chem. Ges. 1917, 50, 31; C. D. Hurd,
 G. L. Oliver, J. Am. Chem. Soc. 1959, 81, 2795; H. G. Gilman, D. S. Melstrom, ibid. 1948, 70, 1655; A. Gabert,
 H. Normant, C. R. Hebd. Séances. Acad. Sci., Paris 1959, 233, 1407.
- [16] T. Zesiger, Thesis, University of Neuchâtel, 1991.